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Abstract—For legged robots to operate in complex terrains,
they must be robust to the disturbances and uncertainties they
encounter. This paper contributes to enhancing robustness by
designing fall detection/prediction algorithms that will provide
sufficient lead time for corrective motions to be taken. Falls
can be caused by abrupt (fast-acting), incipient (slow-acting),
or intermittent (non-continuous) faults. Early fall detection is a
challenging task due to the masking effects of controllers (through
their disturbance attenuation actions), the direct relationship
between lead time and false positive rates, and the temporal
behavior of the faults/underlying factors. In this paper, we
propose a fall detection algorithm capable of detecting both
incipient and abrupt faults while maximizing lead time and
meeting desired thresholds on the false positive and negative
rates.

Index Terms—fault detection, fall detection, classification,
bipedal robot, lead time, anomaly detection

I. INTRODUCTION

A. Motivation

For legged robots to successfully navigate in the real world,
it’s imperative to employ methods to predict the potential
occurrence of a fall and, if possible, execute reflexive motions
to either prevent the fall from happening or to make the
“landing” less dangerous, to the robot or its surroundings.
The infeasibility of accounting for all potential perturbations
and uncertainties while operating autonomously in dynamic
environments makes falling almost inevitable. Here, we focus
on bipedal robots.

Fall detection and recovery algorithms often consist of two
parts: fall detection and reflexive motions. The focus of this
paper, however, is solely on fall detection. The objective
is to reliably predict potential falls of bipedal robots with
sufficient time to deploy a recovery strategy. Bipedal robots
are chosen because their smaller support polygon causes them
to be inherently less stable in comparison to robots with more
legs. To simplify the fall detection problem while providing a
pathway to scale up to more complex dynamic motions and
robots, the task of standing with a planar four-link biped is
chosen. As our task of interest is standing, we define a “fall’ as

any link other than the feet coming in contact with the ground
[1] or if the feet are off the ground.

B. Background

In the following, the term falls will be associated with
the term faults, which are defined as unacceptable deviations
from expected behavior in at least one variable [2]. Faults
can be classified based on their time dependency, location,
and underlying causal factors. Temporally, faults can either
be abrupt (step-like or rapidly varying), incipient (drift-like
or slowly varying), or intermittent (non-continuous). Faults
can be caused by either internal or external disturbances and
uncertainties [2]–[4]. Incipient faults arise from a gradual devi-
ation from the robot’s nominal states or assumed environment,
while, as the name suggests, abrupt faults typically arise from
shoves or unexpected impacts with the environment. Inter-
mittent faults are non-continuous faults. We do not address
intermittent faults in this paper.

In general, the states of the robot can be divided into
three classes: safe/balanced, falling, and fallen [5]. The
safe/balanced states are states where it is possible for the
robot to avoid falling while under the influence of its nominal
feedback controller. These states are therefore contained in a
subset of the viability kernel [6]–[8].

C. Literature Review

A fall detection algorithm has been implemented in the
commercial bipedal robot, Digit [9]. However, this does not
appear to be the norm. The objective of most bipedal fall
detection algorithms found in literature is to reliably and
promptly detect all abrupt faults. Incipient faults are not
considered.

Fault detection reliability has been determined using a
combination of evaluation terms from the confusion matrix,
such as false positive and negative rates [4], [5], [7], [8],
[10]–[15]. Thresholds, based on factors such as center of mass
height, have been proposed to minimize the percentage of
false negative fault declarations in [5], while the output of
the fall detection algorithm is monitored for a certain number
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of windows (Nmonitor) to reduce the false positive rate in [5],
[10], [16]. Lead time, defined as the difference between the
time of the actual fall and the predicted fall, is used to inform
whether or not sufficient time is left for the implementation
of recovery/reflexive motions. It is desirable to have a large
lead time, however, maximizing lead time can increase false
positive rates. The minimum amount of lead time needed
depends on the chosen recovery algorithm and the robot’s
dynamics, as discussed in [4], [5], [8], [17]

Fall detection algorithms can either rely on physics-based
[18]–[20] or data-based models [5], [7], [8], [10], [13]–[15].
Physics-based models can suffer from model inaccuracies
while data-based models are limited by the amount of data
available. For both physics-based and data-based models, the
objective is to obtain either a model of the nominal (safe)
states and/or of the faulty (unsafe) states. However, this is not
simple. In practice, it is infeasible to quantify all faults that
can lead to a fall, and the faulty states in any given trajectory
are irregular and rare. Both of these conditions make it nearly
impossible to obtain an accurate model of the anomalies. It is
also challenging to obtain a model that accounts for all the safe
states of the robot. However, due to advances in the machine
learning community, data-based algorithms are becoming more
common.

Data-driven detection algorithms can be divided into two
subsequent parts, feature engineering and the method used for
detection. Feature engineering consists of selecting and trans-
forming raw data into features that can differentiate between
faulty and normal states. Even though stability metrics are
used to increase the robustness of controllers, they individually
are not a sufficient condition for falling [10]. A combination
of stability metrics from bipedal control theory, such as the
angular momentum about the center of mass (Lcom), and
kinematic functions, such as the center of mass position (pcom),
are typically chosen as features [5], [7], [8], [10], [13]–[15].

Classification algorithms, such as that used by [5], attempt
to learn a model from labeled training data and then classify
a data point into one of the classes based on the learned
model. A disadvantage of classification algorithms is that they
can output incorrect predictions if the input data is outside
the training data parameters (outside distribution). Nearest-
neighbor-based algorithms, such as [16], assume that normal
data exist in highly dense spaces whereas the neighborhood
of anomalous data is sparse. However, these algorithms can
have high false positives if the normal instances do not exist in
sufficiently dense neighborhoods. Threshold-based algorithms,
such as [10], attempt to use a combination of features to derive
a threshold that can be used to separate faulty and normal
states.

D. Objective of the Paper

For the task of standing and for given upper bounds on
the false positive and false negative rates, our objective is
to detect potential falls caused by either incipient or abrupt
faults while maximizing the lead time, that is, the time
from fault declaration to the robot entering a fallen state. The

objective is challenging due to the crowding phenomenon [3],
[21], masking effects of the controller as it tries to mitigate
deviations from steady state [2], and the direct relationship
between lead time and false positive rate. The crowding
phenomenon is the similarity between the normal and incipient
faulty data which makes it difficult to separate normal data
from faulty data [3], [21].

To achieve this objective, we design a nearest-neighbor
detection algorithm and compare its performance to an existing
classification-based detection algorithm. A threshold-based
method was not chosen for comparison because it is difficult
to find simple thresholds for systems as complex as bipedal
robots.

E. Contributions

The major contributions of the paper are as follows:
• An algorithm that maximizes lead time subject to bounds

on false positive and negative rates;
• A method of identifying trajectories associated with in-

cipient or abrupt faults;
• A way to label the data based on lead time is proposed;
• A nearest-neighbor classification-based fall detection al-

gorithm that can detect both incipient and abrupt faults;
and

• A comparison of the proposed nearest-neighbor classifi-
cation algorithm and an existing classification algorithm.

II. ROBOT DESCRIPTION AND DATA GENERATION

In this section, we describe the robot model that is used for
this study and how the data are generated and prepared.

A. Robot Description

We assume a four-link planar robot based on Wandercraft’s
exoskeleton Atalante [22], [23]. The four links are joined by
three actuated revolute joints, called the ankle, knee, and hip.
Fig. 1 depicts the chosen robot.

Fig. 1. Four-link robot model used in our study.
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B. Equations of Motion and Simulation Environment
The equations of motion are given by (1) and (2)

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+ JT (q)Γ (1)
J(q)q̈+ J̇(q, q̇)q̇ = 0, (2)

where q is the vector of generalized coordinates defined by
(3), u is the torque input vector, D, C, G, and B are the iner-
tia, Coriolis, gravity, and torque distribution matrices/vector,
respectively, J is the Jacobian mapping the contact wrenches
to the generalized coordinates, and Γ is the contact wrench.
The floating-base Lagragian model is given by (1) while the
contact/acceleration constraint is given by (2) [24]–[26].

q =



foot x
foot z

foot angle (θ f )
ankle angle (θa)
knee angle (θk)
hip angle (θh)


. (3)

A PD controller to maintain the robot in a standing position
was designed and implemented in MATLAB [27]. The PD
controller seeks to keep the foot flat on the ground while main-
taining the center of mass (CoM) inside the support polygon.
The simulation environment uses MATLAB’s ODE45 function
and compliant ground contact forces represented as a spring-
damper.

C. Data Generation
Four hundred trajectories each are generated for abrupt and

incipient faults, with a sampling time of 0.03s and a disturbing
force applied to the torso. To emulate disturbances that might
cause the robot to oscillate slightly while standing, a random
impulse force in the range of 0-159N and lasting for 0.075s
is applied at time zero, but only the data after 2 seconds is
kept. The abrupt faults last for 0.075 seconds with magnitudes
ranging from 0-320N , while the incipient faults last for 1.0
seconds and range from 0-46N. The ranges, based on previous
experiments, are chosen such that half the trajectories end in
a fall (we’ll refer to these trajectories as faulty trajectories),
and half of the safe (non-falling) trajectories have a heel or toe
lift. Similar to [5], the force magnitudes are generated using
a uniform distribution. The abrupt force is applied at random
between 2.5s and 3.5s, while the incipient fault is applied at
random between 2.0s and 3.5s. The application time for the
incipient fault is longer because, in order not to include an
abrupt deviation in the robot’s nominal states, only the data
collected after the force is applied is kept.

D. Data Pre-processing
The features are selected as

Lcop −Lcom
px

com
vx

com
(ptoe − pcom)

x

(pheel − ptoe)
xz

(Lcop +Lcom)∗ sgn(px
com − px

fmid
)


(4)

where vcom is the CoM velocity, ptoe, pheel , and p fmid are the
position of the toe, heel and middle of the foot, and Lcop is the
angular momentum about the contact point1. These features
are chosen based on their correlation with the lead time
and other features commonly used in literature. The distance
correlation coefficient is used to evaluate the correlations as it
is able to capture nonlinear relationships [28].

The features are split into training (60%), validation (20%),
and testing (20%) sets using scikit-learn’s [29] stratified
train_test_split method and k-folds methods with the number
of folds set to 5. The stratified methods are chosen because
they ensure that each of the splits has the same distribution of
normal and faulty data. Scikit-learn’s min-max scaler is used to
scale the data to a range of {0,1}. To ensure that only transient
data is kept for training, only the first 6s of trajectories that
are deemed as normal are kept.

III. FALL DETECTION METHODS

As a baseline, we use the SVM-based classification algo-
rithm of [29], while the nearest-neighbor classification algo-
rithm is based on the Ward minimum variance method [30]. To
prioritize recent data points over previous ones, both methods
make use of sliding windows. The number of data points in a
window is referred to as Nwindow. It is important to note that
both methods are supervised algorithms.

A. SVM Classifier

The radial basis function is chosen as the kernel and the
soft margin formulation is implemented for the SVM classifier
(SVM classification algorithm). The training data for the
classifier is defined as

D = {Xi,yi}n
i=1

where
n = number of windows across all training data
m = number of time steps in a window

xi j = features at time step j in window i

Xi =
[
xi1 xi2 · · · xim

]⊺
yi ∈

{
−1 Xi ∈ faulty trajectory

1 Xi ∈ normal trajectory

}

B. Nearest-Neighbor Classification Algorithm

The selected nearest-neighbor classification algorithm de-
termines distance using the Ward minimum variance and a
weighted Euclidean distance. Given two clusters A and B, the
Ward minimum variance method calculates the effort, EAB, it
takes to join the two clusters together, as determined by the
sum of squared errors, specifically,

EAB = SSEAB −SSEA −SSEB, (5)

1The contact point is set to the rotation point (toe or heel) when the foot
rotates, and the center of pressure otherwise.
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where

SSEAB = (A∪B−µA∪B)
⊺R−1

A∪B(A∪B−µA∪B)

SSEA = (A−µA)
⊺R−1

A (A−µA)

SSEB = (B−µB)
⊺R−1

B (B−µB)

R = correlation coefficient matrix
µ = mean vector

In our application, cluster B contains the features at the
current time step while cluster A contains all the features in
the previous time steps included in the window. Given, that B
is a single data point, the Ward minimum variance simplifies
to

EAB = SSEAB −SSEA. (6)

The nearest-neighbor classification algorithm detects a po-
tential fall if the effort it takes to join the two clusters A
and B is higher than a threshold determined from the training
data. The threshold is calculated offline as the maximum
EAB value for the safe data while R is determined using
distance correlation. Note that the underlying assumption for
the nearest-neighbor classification algorithm is that cluster A
only contains safe data points.

C. Data Labeling

As one of our objectives is to maximize the lead time, we
propose the use of a training lead time to label windows in
a trajectory. Training lead time is defined as the difference
between the time of the actual fall and the time when a sliding
window of a trajectory can be labeled as faulty. Therefore,
training lead time is a subset of the maximum lead time
that can be achieved in a faulty trajectory. While labeling
all windows in a faulty trajectory as faulty would achieve
the maximum lead time, it would also increase the rate of
false positives. For instance, given two faults that are close in
magnitude but where one results in a fall and the other is safe,
the safe trajectory could be mistaken as a faulty trajectory.

If a trajectory does not contain a fall, all windows derived
from the trajectory are labeled as 1. If a trajectory ends in
a fall, all windows containing data points after the desired
training lead time are labeled as -1. Note that for an abrupt
fault, the training lead time is only defined after the push is
introduced, and only the data points before a fall are kept for
the training data of both faults.

The desired training lead time is determined by a grid search
algorithm that trains the algorithm of interest using a range of
training lead times from 0 to 2s and evaluates the results on the
training and/or validation data. The training data is included in
the evaluation process for cases where the algorithm is allowed
to make mistakes, such as when using a soft margin in SVM.
A training lead time of 2s would label all the data points in a
faulty trajectory as faulty.

D. Performance of Fall Detection Methods

In this section, we analyze the performance of the proposed
nearest-neighbor classification algorithm and the SVM clas-
sifier. The algorithms are trained and evaluated on testing

data across all 5 folds using just abrupt trajectories, just
incipient trajectories, and both trajectories together. The eval-
uation metrics are false positive and negative rates, and the
average lead time achieved. The desired false positive and false
negative rates are set to 0. The training lead time chosen is the
maximum that meets the given bounds on the false positive
and false negative rates when evaluated on the training and
validation data. Based on previous experiments, we set the
values of the remaining hyper-parameters as Nwindow = 10 and
Nmonitor = 1.

From Table I and II we see that the nearest-neighbor and the
SVM classification algorithms perform similarly when trained
and evaluated on the abrupt and incipient faults separately. The
nearest-neighbor classification algorithm achieves an average
lead time of 0.46s and 0.91s, respectively, for the abrupt
and incipient faults, while the SVM classification algorithm
achieves an average lead time of 0.48s and 0.97s. Because
our sampling time is 0.03s, the difference in the performance
of both algorithms is 1 and 2 data points for the abrupt and
incipient fault respectively. Fig. 2 displays the classification
results for several trajectories.

When both faults are trained and evaluated together, the
SVM classification algorithm achieves an average lead time
0.15s higher compared to the nearest-neighbor classification
algorithm. In comparison to its average performance on the
abrupt and incipient fault, the SVM classification algorithm
achieves an average lead time of 0.08s less when trained on
both faults together. Similarly, the nearest-neighbor classifica-
tion algorithm achieves an average lead time of 0.19s less.
As a result, the SVM classification algorithm outperforms
the nearest-neighbor classification algorithm when both faults
are trained together. However, because both algorithms can
achieve lead times higher than the 0.2s, which is the lead
time required by reflexive algorithms such as [7] and [8],
both algorithms are viable options. As the nearest-neighbor
classification algorithm learns the safe/good model, it should
be used when faulty data is sparse.

E. Categorizing Faults

A means to decrease the difference in performance for
both algorithms when trained on both faults together vs.
separately is to implement a multi-class classification problem.
The labels for this multi-class classification can be identified
as: abrupt fault safe (AS), abrupt fault fall (AF), incipient
fault safe (IS), and incipient fault fall (IF). Using these labels
with the one-vs-one or one-vs-rest multi-class classification
techniques typically implemented [31], results in six and four
detectors, respectively. However, as one-vs-rest can result in
ambiguities and class imbalances and using one-vs-one can
result in ambiguities and higher computational times, we seek
a different approach [31].

If the problem is decomposed into classifying trajectories
first into the incipient versus abrupt categories, and secondly,
detecting falls (or not) within these categories of trajectories,
the number of detectors needed is only three: a detector for
identifying types of trajectories, a second for detecting falls in
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TABLE I. A comparison of the nearest-neighbor classification algorithm’s 
performance when trained with (1) just the abrupt fault, (2) just the 
incipient fault, and (3) both faults together. Note that the false positive and 
negative rates are 0.

Abrupt Fault
Only

Incipient Fault
Only

Both Faults
Together

Fold Average
Lead Time

Average
Lead Time

Average
Lead Time

1 0.48 0.93 0.49
2 0.46 0.91 0.49
3 0.44 0.9 0.51
4 0.43 0.89 0.51
5 0.5 0.89 0.51

Average 0.46 0.91 0.50

TABLE II. A comparison of the SVM classification algo-rithm’s 
performance when trained with (1) just the abrupt fault,(2) just the incipient 
fault, and (3) both faults together. Note that the false positive and negative 
rates are 0.

Abrupt Fault
Only

Incipient Fault
Only

Both Faults
Together

Fold Average
Lead Time

Average
Lead Time

Average
Lead Time

1 0.5 1.0 0.65
2 0.47 0.96 0.66
3 0.49 0.98 0.66
4 0.44 0.97 0.65
5 0.51 0.96 0.63

Average 0.48 0.97 0.65

incipient trajectories, and a third for detecting falls in abrupt
trajectories. Furthermore, using this technique resolves the
ambiguity problem as the incipient vs. abrupt classifier can be
used to determine the operational space (abrupt vs incipient
fault).

To achieve this, we propose using SVM to categorize the
trajectories into incipient vs abrupt. The training data for this
SVM are taken as the joint velocities, and the labels 1 and -1
are used for the incipient and abrupt faults, respectively. For
the training data, the windows in abrupt trajectories before a
force is applied and windows uniformly distributed throughout
the incipient trajectories are labeled as incipient and only the
windows containing the force are labeled as abrupt. The rest
of the pre-processing process follows steps similar to those in
Section II-D.

IV. MULTI-CLASS CLASSIFICATION DETECTION METHOD

The proposed multi-class classification fall detection
method is comprised of three algorithms, one for detecting
falls caused by abrupt faults (abrupt fault detector), another
for detecting falls caused by incipient faults (incipient fault
detector) and a third for identifying the type of fault (fault
type identifier).

The fault type identifier is first trained and evaluated on
the training data. Next, the abrupt fault detector and incipient
fault detector are trained using the relevant trajectories and

the windows of trajectories misclassified by the fault type
identifier. The training lead time is determined similarly as
in Section III-D.

When detecting potential faults, we run all three algorithms
in parallel. As we initially assume that every trajectory has
an incipient fault, the output of the incipient fault detector is
utilized by default. However, if the fault identifier classifies
a trajectory as containing an abrupt fault, we start using
the output of the abrupt fault detector. In other words, our
null hypothesis is the incipient fault, while our alternative
hypothesis is the abrupt fault. As a result, a delay in the fault
identifier only results in a delay in the abrupt fault detector.
When an abrupt fault is identified, the fault identifier is no
longer used to identify the fault type until it is reset. Inherent in
our implementation is that only one fault will be encountered
per trajectory.

A. Results of Proposed Multi-Class Classification Algorithm
Across All Folds

We train and evaluate the multi-class classification algorithm
using the same parameters and metrics as described in Section
III-D. On average, across all folds, when trained using the
features in (4), the multi-class classification algorithm achieves
0.06s and 0.05s additional average lead time across all folds
for the nearest-neighbor and SVM classification algorithms,
respectively. This results in an average lead time difference of
0.13s and 0.03s across all folds for the nearest-neighbor and
SVM classification algorithms in comparison to their average
when trained with the incipient and abrupt faults separately.
Note that the SVM fault identifier has a delay of 0.07s or
3 data points, in detecting abrupt faults across all folds. The
results are displayed in Table IV and V.

Even though the multi-class classification algorithm
achieved similar results to the binary classification algorithm,
an advantage over binary classification is that different features
can be used for each detector. Feature selection algorithms
such as sequential feature selection can be used to determine
the optimal features. For instance, using the features shown in
Table III derived from scikit-learn’s [29] sequential forward
feature selection results in an average lead time increase of
0.1s over training a binary classification with (4). However, to
truly take advantage of the multi-class classification algorithm
more investigation into optimal feature selection is needed to
determine whether the additional average lead time gained can
overcome the fault identifier delay.

V. CONCLUSION

The objective of this paper was to design a fall detection
algorithm for bipedal robots that is capable of detecting both
incipient and abrupt faults while maximizing the lead time and
meeting the desired false positive and negative rates. To meet
the desired upper bound on the false positive and negative
rates, we proposed using training lead time, a subset of lead
time, to label the windows in a trajectory. We successfully
implemented a nearest-neighbor fall detection classification
algorithm, and analyzed and compared its performance to an
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Fig. 2. Plots displaying the classification results of the nearest-neighbor and SVM classification algorithms for several trajectories. The red solid 
line is the threshold for the decision function. The dots are the last data point in a window. Positive and negative values for the SVM decision function 
result in safe and faulty classifications, respectively. On the other hand, values below and above the decision function threshold are classified as safe and 
faulty for the nearest-neighbor classification algorithm.

TABLE III. Features derived from scikit-learn’s [29] sequential forward 
feature selection

Incipient Fault Features Abrupt Fault
Features


knee angle
hip angle

vel hip angle
(Lcop +Lcom)∗ sgn(px

com − px
fmid

)




px
com

vx
com

px
com − px

heel
foot x

vel foot z
vel hip angle



SVM classification-based algorithm. Using false positive and
negative rate, and average lead time as metrics, we found that
the nearest-neighbor classification algorithm’s performance is
comparable to the SVM classifier when trained on abrupt
and incipient faults separately. However, it detects falls on
average 0.15s (results to 5 data points given our sampling
time) slower than the SVM classifier when the faults are

TABLE IV. A comparison of the maximum average lead time 
achieved by the binary nearest-neighbor classification algorithm and the 
multi-class classification algorithm with nearest-neighbor fault detectors

Fold Multi-class Classification
Average Lead Time

Binary Nearest-Neighbor
Average Lead Time

1 0.56 0.49
2 0.52 0.49
3 0.57 0.51
4 0.56 0.51
5 0.57 0.51

Average 0.56 0.5

trained together. Given that the nearest-neighbor classification
algorithm still has average lead time of 0.5s, we conclude
that if a sufficient amount of faulty data is not available, the
nearest-neighbor classification algorithm can be used to detect
abrupt and incipient faults simultaneously.
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TABLE V. A comparison of the maximum average lead time achieved by 
the binary SVM classifier and the multi-class classification algorithm 
with SVM fault detectors

Fold Multi-class Classification
Average Lead Time

Binary Classification
Average Lead Time

1 0.7 0.65
2 0.73 0.66
3 0.70 0.66
4 0.70 0.65
5 0.67 0.63

Average 0.7 0.65

Even though the SVM classification algorithm outperforms
the nearest-neighbor classification algorithm, its leading time
when trained on both faults together is slightly lower than
its average lead time from both faults separately. As a result,
we investigate the use of a multi-class classification algorithm
to reduce this difference. We find, that using the same fea-
tures with the multi-class classification algorithm increases
the average lead time slightly. We briefly investigate using
the multi-class classification algorithm with different features
for the incipient and abrupt faults, and conclude that the
multi-class classification algorithm shows promising results.
However, more investigation is needed in feature selection and
reduction in the delay time of the fault identifier to truly assess
the advantage of using a multi-class classification algorithm.
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