
Fall Prediction for Bipedal Robots: The Standing Phase

M. Eva Mungai, Gokul Prabhakaran, and Jessy W. Grizzle

Abstract— This paper presents a novel approach to fall
prediction for bipedal robots, specifically targeting the detection
of potential falls while standing caused by abrupt, incipient,
and intermittent faults. Leveraging a 1D convolutional neural
network (CNN), our method aims to maximize lead time
for fall prediction while minimizing false positive rates. The
proposed algorithm uniquely integrates the detection of various
fault types and estimates the lead time for potential falls.
Our contributions include the development of an algorithm
capable of detecting abrupt, incipient, and intermittent faults
in full-sized robots, its implementation using both simulation
and hardware data for a humanoid robot, and a method for
estimating lead time. Evaluation metrics, including false positive
rate, lead time, and response time, demonstrate the efficacy of
our approach. Particularly, our model achieves impressive lead
times and response times across different fault scenarios with a
false positive rate of 0. The findings of this study hold significant
implications for enhancing the safety and reliability of bipedal
robotic systems.

I. INTRODUCTION

The distinct morphology of bipedal robots endows them
with the unique capability to navigate diverse terrains, from
unstructured environments to human-centric spaces, making
them ideal candidates for assisting in daily tasks and crit-
ical situations. Nevertheless, the real-world deployment of
bipedal robots remains limited. Their high-dimensional, hy-
brid nature, combined with occasional stringent constraints,
complicates the achievement of stable motion, particularly
when confronted with disturbances.

A. Motivation

Although a well-designed controller can counteract certain
disturbances, it is infeasible to anticipate every potential
disruption a bipedal robot might face in real-world scenarios.
This unpredictability underscores the inevitability of falls.
To truly harness the capabilities of bipedal robots, there is a
pressing need for fall prediction algorithms that can foresee
a fall with ample lead time, where lead time denotes the
interval between the fall prediction and its actual occurrence.
Addressing this need, our paper presents a 1D convolutional
neural network-based fall prediction algorithm. This algo-
rithm not only predicts falls but also estimates the lead time,
specifically for the standing task with the Digit bipedal robot
[1]. We focus on the standing task as it offers a simplified
context for fall prediction while laying the groundwork for
more dynamic movements.

{Mechanical Engineering, Robotics, Robotics} Department, University of
Michigan, Ann Arbor, MI, USA.{mungam,gok,grizzle}@umich.edu

Fig. 1: The experimental setup that was used to collect
hardware data with the Digit robot [1].

B. Background

Falls in bipedal robots can often be traced back to faults,
which are characterized as unforeseen deviations in one or
more operational variables. Faults can occur from failures in
the robot’s hardware or software components, or be triggered
by external factors. Irrespective of their origin, faults can
be classified based on their temporal behavior into three
categories: abrupt, incipient, and intermittent. Abrupt faults
manifest as sudden or rapid changes, incipient faults evolve
gradually over time, and intermittent faults appear sporadi-
cally [2]. Each of these fault types can arise during real-world
operations. For example, abrupt faults might be triggered by
unexpected interactions with the environment (e.g., stepping
in a hole), incipient faults could stem from discrepancies in
the model (e.g., poor trajectory tracking in the operational
space of the robot), and intermittent faults might emerge
in unpredictable environments laden with obstacles. In this
context, we term faults that precipitate a fall as critical faults
and the paths leading to a fall as unsafe trajectories.

C. Literature Review

Existing fall prediction algorithms for bipedal robots pre-
dominantly target the detection of critical abrupt faults.
The primary method consists of establishing a threshold
that distinguishes these faults from regular data. Selecting
a threshold is a delicate task due to the impracticality of
accounting for every potential critical fault and the com-
plexity of capturing (e.g., in a model) all the robot’s safe
states. Additionally, the presence of faulty states in the data
is infrequent.



The overarching aim of fall prediction algorithms is to
extend the lead time while curtailing the false positive rate.
Consequently, their performance is typically assessed based
on these two metrics [3]. On the one hand, it’s important to
note that there’s an inherent positive correlation between lead
time and false positive rate. On the other hand, the impact
of false negatives can be alleviated by setting thresholds
on kinematic signals, such as the height of the center of
mass, as elaborated in [4]. The minimum lead time deemed
acceptable varies depending on the specific robot and the
selected recovery algorithm.

In the realm of fall prediction, thresholds are derived from
various sources: analytical models like [5]–[9], hand-crafted
features as seen in [10]–[14], or data-driven models such
as [4], [15]–[22]. While analytical models offer a structured
approach, they can be hampered by model uncertainties and
might not fully encapsulate the robot’s full dynamics, espe-
cially if based on simplifying assumptions. Simple thresholds
are elusive for multifaceted systems like bipedal robots. On
the other hand, while data-driven models might necessitate
extensive data and remain constrained to the data’s distribu-
tion, their popularity is on the rise, thanks to advancements in
machine learning and computational capabilities. While both
shallow methods [4], [15]–[20] and deeper neural network-
based approaches [21], [22] have found their place in the
literature, fall prediction algorithms implemented for full-
sized robots are generally based on shallow methods [3],
[4], [15], [19].

D. Objectives of the Paper

Our goals are as follows:
1) Detect imminent falls caused by abrupt, incipient, and

intermittent faults, ensuring an adequate lead time for
the task of standing with a full-sized robot.

2) Optimize the trade-off between maximizing lead time
and minimizing false positive rates.

3) Accurately estimate the lead time.
The robot is deemed to have fallen if the height of its
center of mass is less than 10 percent of its initial height.
Drawing parallels with our prior research [23], we adopt
0.2s as the minimum desired lead time, aligning with the
requirements of reflexive algorithms such as those in [15],
[24]. Achieving this objective presents challenges, given the
controller’s masking effects, the crowding phenomenon in-
duced by incipient faults [25], the direct correlation between
false positive rates and lead time, the sporadic nature of
intermittent faults, and the diminishing number of data points
with increasing lead time.

To address these challenges, we propose a 1D convolu-
tional neural network (CNN)-driven fall prediction algorithm,
enhanced with several components. Our choice of a deep
model is motivated by the significant impact of user-selected
features on lead time and false positive rates when using
shallow methods, as evidenced in our earlier work [23]. Fur-
thermore, extracting these features for complicated bipedal
robots, like Digit, is non-trivial. Our choice of a 1D CNN is
underpinned by its equivariance to translation and proficiency

Fig. 2: Kinematics architecture of the Digit robot by Agility
Robotics [1]. Image Credit: Grant Gibson [28].

in discerning local patterns in data with a grid structure. It is
noteworthy that a bipedal robot’s trajectory can be mapped
onto a 1D grid, sampled at consistent (uniform) intervals
[26].

E. Contributions

We present several key contributions in this work:

• Introduction of an algorithm capable of detecting abrupt,
incipient, and intermittent faults in full-sized robots
undertaking a standing task.

• Successful implementation of our fall prediction algo-
rithm, both in simulation and on hardware, tailored for
a full-sized humanoid robot.

• Development of an accurate method to estimate lead
time.

• Release of an open-source dataset of a full-sized bipedal
robot comprised of simulation and hardware trajectories
with various critical and non-critical faults. The dataset
can be accessed at [27].

II. HARDWARE OVERVIEW AND DATA GENERATION

This section provides an overview of the bipedal robot,
Digit, and outlines our approach to data generation.

A. Hardware Overview

Developed by Agility Robotics, Digit is a state-of-the-art
bipedal robot [1]. While it draws inspiration from Agility
Robotic’s earlier model, Cassie, Digit distinguishes itself
with the addition of a torso and an integrated perception
system. Possessing 30 degrees of freedom, Digit has 20
actuated joints. Weighing in at 48kg, its lower limb design
is inspired by a Cassowary bird, leading to the unique
nomenclature where what would typically be termed “feet”
are actually “toes”; we will use the latter terminology. The
kinematic architecture of Digit is illustrated in Figure 2.



B. Simulation Data Generation

We employ Agility’s MuJoCo-based simulator in conjunc-
tion with a standing controller. This controller is designed to
maintain both the center of mass and the zero moment point
within the support polygon [28]. We generate 900 trajectories
each for abrupt and incipient faults, and 100 trajectories for
intermittent faults. These faults are simulated by applying
forces of various magnitudes to the robot’s torso in the x-
direction (i.e., sagittal plane).

Abrupt faults are simulated using impulsive forces with
a duration of 0.075s, randomly uniformly distributed within
a range of 0 - 414.8N. In the case of incipient faults, their
crowding effect is captured through trapezoidal force profiles
[29]. These profiles have a slope of 480N

s over a varying
duration to result in a desired constant amplitude over a time
duration of 1s; the resulting force amplitudes of incipient
faults are randomly uniformly distributed between 0 - 57.6N.
Similar to [4] and [23], the force ranges for both abrupt and
incipient faults are calibrated to ensure an equal distribution
of falling and safe trajectories. Emulating the unpredictable
nature of intermittent faults, we apply two distinct forces.
These forces are designed to mimic either abrupt or incipient
faults. The first force’s magnitude remains within the safe
range, while the second force’s magnitude can potentially
lead to a fall or maintain stability.

To simulate minor disturbances that might induce slight
oscillations in the robot’s standing posture, we introduce a
random impulsive force with a 0.075s duration, ranging from
0 - 202.4N, at the start of each trajectory. The abrupt and
incipient faults are subsequently introduced between 2 - 3.5s
following this oscillatory perturbation for all three faults.
The time between the application periods for the two faults
comprising the intermittent fault is 2s.

C. Hardware Data Generation

To prevent the Digit robot from getting damaged during
data collection, the hardware data generation is carried out
with Digit attached to a gantry via a slack cable that
allows Digit to move about. Additionally, the motor power
is “killed” when the robot starts to fall, thereby allowing
the gantry to catch it. Impulsive and trapezoidal forces are
introduced to the robot’s torso by pushing Digit with a pole
as depicted in Figure 1. To emulate the trapezoidal forces that
result in an incipient fault, the pole is first rested on Digit
before pushing. The approximate time of force application
is obtained by coordinating the push on the robot with a
keyboard press and evaluating the center of mass data.

Twenty-seven (27) safe and 13 unsafe trajectories are
collected for abrupt faults, while 26 safe and 15 unsafe tra-
jectories are collected for incipient faults. Out of the abrupt
and incipient unsafe trajectories, six and ten trajectories,
respectively, exhibited trajectory profiles resembling those
observed in simulations characterized by lower falling forces.
The remaining falling trajectories exhibited similarities to
simulation profiles featuring forces within the mid-range of
the falling forces. Figure 1 depicts the experimental setup of
the hardware data.

0 1 2 3 4 5

0

500

1,000

1,500

2,000

Lead Time(s)

N
um

be
r

of
D

at
a

Po
in

ts

Fig. 3: The number of data points vs. lead time.

D. Data Pre-processing

From the 1,800 simulation-generated trajectories for
abrupt and incipient faults, 200 are reserved for testing.
The remaining trajectories are divided into training (80%)
and validation sets. The testing set is further supplemented
with intermittent fault data and hardware data. We employ
scikit-learn’s stratified train-test split method for segmenting
the simulation data and its min-max scaler to normalize the
data within the range [0,1]. It’s important to note that only
transient data is utilized during training.

The trajectories have a sampling rate of approximately
40Hz, and sliding windows containing 10 data points are
utilized to prioritize the most recent data points. To ensure
that the robot oscillates slightly even in the presence of
perturbing forces towards the high end of the range described
in Section II-B, only windows during and after the fault
introduction are retained for the simulation data. For both
hardware and simulation data, the features are transformed
to the world coordinate located on the ground between the
toes. Lastly, to adjust for any drift in the hardware data,
the initial feature values are subtracted from subsequent data
points.

III. FALL PREDICTION METHOD

The task of detecting critical faults and estimating lead
time can be framed as a regression problem where lead time
serves as the predicted variable. Given our definitions of lead
time and critical faults, data points from unsafe trajectories
prior to a critical fault’s onset, along with all data points
from safe trajectories, are assigned an infinite lead time. Data
points following the introduction of a critical fault have a
lead time within the range [0,H], where H > 0 represents
the maximum prediction horizon (i.e, maximum interval of
time over which fault prediction is attempted). Predicting a
lead time less than H can thus indicate the presence of critical
faults. However, as illustrated in Figure 3, the quantity of data
points diminishes exponentially with increasing lead time,
leading to an imbalanced regression problem [30]–[33].

While techniques like the Synthetic Minority Over-
Sampling Technique for Regression with Gaussian Noise
[33] exist for addressing imbalanced regression data, the
direct correlation between lead time and false positive rate



Fig. 4: The proposed fall prediction algorithm with three
components: critical fault classifier, lead time classifier and
lead time regressor. The green boxes depict the algorithm’s
predicted lead time.

complicates achieving maximum lead time with an accept-
able false positive rate, as evidenced by studies like [4], [22].
Consequently, we reframe the problem into a combined
classification and regression challenge. Our proposed al-
gorithm consists of three main components: a critical fault
classifier, a lead time classifier, and a lead time regressor. All
three components share a 1D CNN architecture, featuring
a 1D CNN layer, a max pooling layer, and two fully
connected layers with the ReLu activation function. The
critical fault classifier’s objective is to predict critical faults
while maximizing lead time and minimizing false positives.
The lead time classifier, on the other hand, categorizes
windows containing critical faults into three distinct ranges:
[0,1], (1,2], and (2,H]. Notably, the (2,H] range contains
significantly fewer data points, as shown in Figure 3. Finally,
the lead time regressor predicts the lead time for windows
that have a critical fault and a lead time within the range
[0,1] 1.

The components of the algorithm interact sequentially.
Initially, the critical fault classifier processes a window of
data points from the robot. If a critical fault is detected,
this window is then relayed to the lead time classifier,
which categorizes the window based on the predefined lead
time intervals. If the categorized lead time is within the
[0,1] interval, the lead time regressor determines the exact
predicted lead time. For other intervals, the infimum lead
time corresponding to that interval is reported (e.g, 1 for
the interval (1,2]). The entire workflow of the proposed fall
prediction algorithm is depicted in Figure 4.

IV. CRITICAL FAULT CLASSIFIER

The features for the critical fault classifier are defined as,

1The ranges of [0,1], (1,2], and (2,H] are chosen based on the perfor-
mance of the classifier and regressor.


(pcom − pmidtoe)

xz

vxz
com

qsag chosen
q̇sag chosen

 (1)

where pcom, vcom, and pmidtoe represent the position and
velocity of the center of mass and the midpoint of the two
toes, respectively. The terms qsag chosen and q̇sag chosen denote
the torso, knee, hip, and toe pitch angles (in the sagittal
plane).

The data for abrupt and incipient faults are structured as,

D = {Xi,yi}n
i=1,

where
n = number of windows across all training data
m = number of time steps in a window

xi j = features at time step j in window i
ti = time at time step i
tft = time the fault is introduced

Tsa f e = safe trajectories
Tunsa f e = unsafe trajectories

Xi =
[
xi1 xi2 · · · xim

]⊺

yi ∈



1
(
Xi ∈ Tunsa f e ∧ ti ≥ tft

)

0

 Xi ∈ Tsa f e

∨
(Xi ∈ Tunsa f e ∧ ti < tft)

 .

With the above labeling, achieving correct identification
for all windows would yield the maximum possible lead time.
For intermittent data, the labeling approach remains similar,
but tft is the time of the first fault’s introduction.

The binary cross-entropy loss is employed for training.
The classifier’s output, when combined with this loss, pro-
duces logits. These logits can be transformed into proba-
bilities using the sigmoid function, allowing for flexibility
in setting the desired probability threshold for critical fault
detection. For instance, a model with an average of 0.27 false
positive rate and 1.79s lead time for abrupt and incipient
faults can achieve 0 false positive rate with 1.66s lead time
by adjusting the probability threshold from 0.5 to 0.9.

The model’s performance is evaluated at each epoch to
optimize lead time and minimize false positive rates. A
model is saved only if it meets one of the following criteria:

1) A reduction in the false positive rate of validation
trajectories.

2) No change in the validation false positive rate, but
an increase in validation lead time, accompanied by a
decrease in the training data’s false positive rate.

3) Both the validation and training false positive rates meet
a predefined maximum threshold.

It’s worth noting that the false positive rates used in the
saving criteria pertain to entire trajectories, not individual
windows.



TABLE I: Results of the critical fault classifier when trained
on abrupt and incipient simulation data and evaluated on (a)
abrupt and incipient simulation data, (b) abrupt and incipient
hardware data, and (c) intermittent data.

Platform Fault
Type

Average
Lead
Time

(s)

Average
Response

Time
(s)

False
Positive

Rate

Simulation Intermittent 1.64 N/A 0.0

Simulation Abrupt and
Incipient 1.52 0.44 0.0

Hardware Abrupt and
Incipient N/A 0.99 0.0

A. Training

We train on a subset of abrupt and incipient simulation
trajectories as described in Section II-D. We use false
positive rate, lead, and response time as our evaluation
criteria. Response time is defined as the difference in time
between the detection of the critical fault and its introduction.
Given that the robot was not allowed to fall to the ground
during hardware data collection, lead time is not defined
for hardware. Similarly, given that intermittent data has two
disturbances, it is difficult to estimate the response time.

B. Results

We evaluate on hardware trajectories, as well as on the
intermittent and remaining incipient and abrupt trajectories,
as defined in Section II-D. The critical fault classifier is able
to achieve 0 false positive rate for training and validation data
when trained for 3 epochs with 8 filters for the 1D CNN.
When evaluated on testing data, the model is able to achieve
0 false positive and negative rates for hardware, intermittent,
abrupt, and incipient fault data.

The resulting average lead times across all unsafe tra-
jectories are 1.64s and 1.52s for intermittent and abrupt
plus incipient data, respectively. The classifier’s success in
categorizing the intermittent data can be attributed to the
sliding window formulation, which allows the algorithm
to recognize local patterns. The resulting average response
times across all unsafe trajectories are 0.44s and 0.99s for
the abrupt and incipient simulation data, and hardware data,
respectively. The 0.55s difference in response time between
the hardware and simulation data can be attributed to the
lower force profiles applied in the hardware. In fact, lower
force profiles in simulation resulted in similar response times
to hardware.

Given that the critical fault classifier detects incipient,
abrupt, and intermittent faults with a lead time greater than
0.2s, it meets our objective of detecting critical faults with
sufficient lead time. The results are summarized in Table I.

V. LEAD TIME PREDICTION

Given the absence of a defined lead time for the hardware
data, this section evaluates the lead time algorithms using
only simulation data. The subsequent section will apply the

0 1 2 3 4 5 6
Time (s)

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

Ce
nt

er
 o

f M
as

s (
m

)

Traj1
Traj2
Traj3
Traj4
Traj5

0

1

2

3

4

5

6

Tr
ue

 L
ea

d 
Ti

m
e 

(s
)

Platform Fault Force(N) LTT(s) LTP (s) RT(s)
Traj1 Sim AF 224.2 2.95 2 2.40
Traj2 Sim IF 31.35 2.25 2 1.10

Traj3 Sim InF 6.32 (IF)
364.2 (AF) 1.50 1 N/A

Traj4 Hdw AF N/A N/A 1 0.4
Traj5 Hdw IF N/A N/A 1 0.95

Fig. 5: Performance of the algorithm in Figure 4 for several
unsafe trajectories with respect to center of mass height.
To conserve space, only data during and after the fault’s
introduction and the center of mass greater than 0.98m is
included. Red stars indicate the algorithm’s detection of
critical faults. The dots and circles are the last data points in a
window for simulation and hardware respectively. Acronyms
used: LTT (true lead time), LTP (predicted lead time), RT
(response time), Sim (simulation), Hdw (hardware), AF
(abrupt fault), IF (incipient fault), and InF (intermittent fault).

complete fall prediction algorithm to both hardware and
simulation datasets.

The feature set for lead time prediction includes those from
(1), complemented by the hip, knee, and toe pitch torques,
as well as the average position of the contact point2.

A. Lead Time Classifier

In this section, we detail our approach to categorizing lead
times for potential falls. The categorization of lead times into
three distinct intervals, [0,1], (1,2], and (2,H], is treated as a
multi-classification challenge. We employ the cross entropy
loss for this purpose.

The method of data labeling is analogous to the one
adopted for the critical fault classifier. However, in this
context, yi is adjusted to indicate the specific lead time range
to which a window is associated. A noteworthy aspect of our
data is the exponential decline in the number of data points
as lead time increases; recall Fig. 3. This implies that the
amount of data available for the interval (2,H] is significantly
less than for the other intervals. As a result, achieving a

2The contact point position defaults to the rotation point when the toes
rotate and to the zero moment point otherwise.



high classification accuracy for this range is not our primary
objective, but rather, an anticipated challenge.

After training on abrupt and incipient simulation faults,
evaluation yields:

• The classifier achieves an accuracy of 1.0 for the interval
[0,1];

• For the interval (1,2], the accuracy stands at 0.95; and
• The interval (2,H] sees a lower accuracy of 0.74, in line

with our expectations.

B. Lead Time Regressor

In this section, we delve into the methodology and results
associated with our lead time regressor. The regressor is
specifically trained on abrupt and incipient simulation data
that fall within the range of [0,1]. For the loss function,
we employ the mean squared error, which is particularly
effective for regression problems as it emphasizes larger
errors over smaller ones.

Upon evaluation:
• The maximum difference between the predicted and

actual lead times is 0.09s.
• The mean difference stands at 0.01s.
• The median difference is also 0.01s.
Given the minimal prediction error, it’s evident that the

lead time regressor performs well at predicting lead times
within the specified range of [0,1].

VI. OVERALL FALL PREDICTION METHOD RESULTS

In this section, we assess the performance of the fall pre-
diction algorithm depicted in Figure 4 using both hardware
and simulation data. It should be noted that the average
lead times and false positive rates presented in Table II and
Figure 5 relate to the entire fall prediction algorithm, not only
the critical fault classifier. Therefore, when the critical fault
classifier identifies a critical fault within the intervals of (1,2]
and (2,H], the true lead time is taken as 1 and 2, respectively,
in line with the lead time classifier. When assessed on
simulation data, the fall prediction algorithm predicted an
average lead time of 1.18s, with a slight difference of only
0.02s from the average true lead time of 1.16s.

Next, we evaluate the algorithm on the hardware data and
the simulation data trimmed at 0.95m, which is the minimum
center of mass height Digit achieved during experiments.
The resulting average lead time is 1.04s and 1.18s for the
hardware and simulation data, respectively. Given that the
fall prediction algorithm outputs the same average lead time
for the simulation data at 0.95m and the original fall height of
0.12m, we can conclude that for the simulation data, the fall
prediction algorithm identifies critical faults before 0.95m. In
comparison to the simulation data trimmed at 0.95m and the
average true lead time for simulation, the average predicted
lead time for the hardware data only differs by 0.14s and
0.12s, respectively. This minute difference, compared to
the average lead times greater than 1, demonstrates the
algorithm’s success in identifying and predicting lead time
for both hardware and simulation data. Table II summarizes

TABLE II: Results of the entire fall prediction algorithm
when trained on abrupt and incipient simulation data and
evaluated on (a) abrupt and incipient simulation data, and
(b) abrupt and incipient hardware data.

Platform Fault
Type

Fall
Height

(m)

Average
Predicted

Lead
Time

(s)

Average
True
Lead
Time

(s)

Simulation Abrupt and
Incipient 0.12 1.18 1.16

Simulation Abrupt and
Incipient 0.95 1.18 N/A

Hardware Abrupt and
Incipient 0.95 1.04 N/A

the results of the fall prediction algorithm, while Figure 5
displays the results for several individual trajectories.

VII. CONCLUSION

In conclusion, this paper aimed to develop an effective fall
prediction algorithm for the bipedal robot Digit, considering
abrupt, incipient, and intermittent faults while accurately
predicting lead time. While a regression approach faces chal-
lenges due to data imbalance, we propose a comprehensive
algorithm comprising a critical fault classifier, lead time
classifier, and lead time regressor.

Our evaluation, based on simulation and hardware data,
demonstrates the effectiveness of each component. The crit-
ical fault classifier achieves a 0 false positive rate, detecting
faults with a minimum average lead time of 1.52s and a
maximum average response time of 0.44s for simulation data.
When evaluated on hardware data, a 0.55s time discrepancy
in the average lead time was noted compared to simulation.
This variance is attributed to differing force profiles in
hardware. The lead time classifier exhibits an accuracy of
up to 1.0 for data-rich ranges, and the lead time regressor
accurately predicts lead times within a 0.09s difference in
simulation data.

Assessing the entire algorithm, we observed a negligible
0.02s difference between average predicted and true lead
times in simulation. In hardware evaluation, where true lead
times were unknown, only a 0.12s difference in lead time was
noted when compared to simulation. Given our algorithm’s
performance across diverse datasets and the successful pre-
diction of fall events in bipedal robots, we can conclude that
our objective has been achieved.

After submission for review, we implemented the algo-
rithm online on hardware and simulation. Preliminary results
show successful detection of critical faults introduced by
applying forces in various directions to the torso and other
links.

Acknowledgements: Funding for M.E. Mungai was pro-
vided in part by a Rackham Merit Fellowship and in part
by NSF Award No. 1808051. Funding for J. Grizzle was
provided by NSF Award No. 1808051. M.E. Mungai thanks
Prof. Maani Ghaffari for useful discussions, and Grant Gib-
son for helpful advice and assistance in experiments.



REFERENCES

[1] Agility Robotics, “Robots,” https://agilityrobotics.com/robots.
[2] R. Isermann, “Process fault detection based on modeling and

estimation methods,” IFAC Proceedings Volumes, vol. 15, no. 4,
pp. 7–30, 1982, 6th IFAC Symposium on Identification and
System Parameter Estimation, Washington USA, 7-11 June.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1474667017629598

[3] R. Subburaman, D. Kanoulas, N. Tsagarakis, and J. Lee, “A survey
on control of humanoid fall over,” Robotics and Autonomous Systems,
vol. 166, p. 104443, 2023.

[4] S. Kalyanakrishnan and A. Goswami, “Learning to predict humanoid
fall,” International Journal of Humanoid Robotics, vol. 8, no. 02, pp.
245–273, 2011.

[5] T. Muender and T. Röfer, “Model-based fall detection and fall preven-
tion for humanoid robots,” in RoboCup 2017: Robot World Cup XXI,
H. Akiyama, O. Obst, C. Sammut, and F. Tonidandel, Eds. Cham:
Springer International Publishing, 2018, pp. 312–324.

[6] Z. Li, C. Zhou, J. Castano, X. Wang, F. Negrello, N. G. Tsagarakis,
and D. G. Caldwell, “Fall prediction of legged robots based on energy
state and its implication of balance augmentation: A study on the
humanoid,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 5094–5100.

[7] B. Stephens, “Humanoid push recovery,” in 2007 7th IEEE-RAS
International Conference on Humanoid Robots, 2007, pp. 589–595.

[8] B. Jalgha, D. Asmar, and I. Elhajj, “A hybrid ankle/hip preemptive
falling scheme for humanoid robots,” in 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 1256–1262.

[9] C. Mummolo, L. Mangialardi, and J. H. Kim, “Numerical estimation
of balanced and falling states for constrained legged systems,” Journal
of Nonlinear Science, vol. 27, pp. 1291–1323, 2017.

[10] J. Ruiz-del Solar, J. Moya, and I. Parra-Tsunekawa, “Fall detection and
management in biped humanoid robots,” in 2010 IEEE International
Conference on Robotics and Automation. IEEE, 2010, pp. 3323–3328.

[11] O. Höhn, J. Gačnik, and W. Gerth, “Detection and classification of pos-
ture instabilities of bipedal robots,” in Climbing and Walking Robots:
Proceedings of the 8th International Conference on Climbing and
Walking Robots and the Support Technologies for Mobile Machines
(CLAWAR 2005). Springer, 2006, pp. 409–416.

[12] R. Subburaman, D. Kanoulas, L. Muratore, N. G. Tsagarakis, and
J. Lee, “Human inspired fall prediction method for humanoid robots,”
Robotics and Autonomous Systems, vol. 121, p. 103257, 2019.

[13] J. Tay, I.-M. Chen, and M. Veloso, “Fall prediction for new sequences
of motions,” in Experimental Robotics: The 14th International Sym-
posium on Experimental Robotics. Springer, 2016, pp. 849–864.

[14] D. H. Tran, F. Hamker, and J. Nassour, “A humanoid robot learns to
recover perturbation during swinging motion,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 50, no. 10, pp. 3701–
3712, 2020.

[15] T. Wu, Z. Yu, X. Chen, C. Dong, Z. Gao, and Q. Huang, “Falling
prediction based on machine learning for biped robots,” Journal of
Intelligent & Robotic Systems, vol. 103, pp. 1–14, 2021.

[16] P. Kormushev, B. Ugurlu, L. Colasanto, N. G. Tsagarakis, and D. G.
Caldwell, “The anatomy of a fall: Automated real-time analysis of
raw force sensor data from bipedal walking robots and humans,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2012, pp. 3706–3713.

[17] J. D. Karssen and M. Wisse, “Fall detection in walking robots by
multi-way principal component analysis,” Robotica, vol. 27, no. 2, pp.
249–257, 2009.

[18] H. Suetani, A. M. Ideta, and J. Morimoto, “Nonlinear structure of
escape-times to falls for a passive dynamic walker on an irregular
slope: Anomaly detection using multi-class support vector machine
and latent state extraction by canonical correlation analysis,” in 2011
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2011, pp. 2715–2722.

[19] F. Marcolino and J. Wang, “Detecting anomalies in humanoid joint
trajectories,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 2594–2599.

[20] J.-J. Kim, T.-Y. Choi, and J.-J. Lee, “Falling avoidance of biped robot
using state classification,” in 2008 IEEE International Conference on
Mechatronics and Automation, 2008, pp. 72–76.

[21] J. André, B. M. Faria, C. Santos, and L. P. Reis, “A data mining
approach to predict falls in humanoid robot locomotion,” in Robot
2015: Second Iberian Robotics Conference, L. P. Reis, A. P. Moreira,
P. U. Lima, L. Montano, and V. Muñoz-Martinez, Eds. Cham:
Springer International Publishing, 2016, pp. 273–285.

[22] D. Liu, H. Jeong, A. Wei, and V. Kapila, “Bidirectional lstm-based
network for fall prediction in a humanoid,” in 2020 IEEE International
Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp.
129–135.

[23] M. E. Mungai and J. Grizzle, “Optimizing lead time in fall detection
for a planar bipedal robot,” in 2023 3rd International Conference on
Electrical, Computer, Communications and Mechatronics Engineering
(ICECCME), 2023, pp. 1–7.

[24] O. Höhn and W. Gerth, “Probabilistic balance monitoring for bipedal
robots,” The International Journal of Robotics Research, vol. 28, no. 2,
pp. 245–256, 2009.

[25] H. Safaeipour, M. Forouzanfar, and A. Casavola, “A survey and
classification of incipient fault diagnosis approaches,” Journal of
Process Control, vol. 97, pp. 1–16, 2021.

[26] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT
press, 2016.

[27] M. E. Mungai, G. Prabhakaran, and J. W. Grizzle, “Digit fall
prediction dataset,” https://github.com/UMich-BipedLab/Digit_Fall_
Prediction_Dataset, 2023.

[28] G. Gibson, “Terrain-aware bipedal locomotion,” Ph.D. dissertation,
University of Michigan, 2023.

[29] Z. He, Y. A. Shardt, D. Wang, B. Hou, H. Zhou, and J. Wang,
“An incipient fault detection approach via detrending and denoising,”
Control Engineering Practice, vol. 74, pp. 1–12, 2018.

[30] B. Krawczyk, “Learning from imbalanced data: open challenges and
future directions,” Progress in Artificial Intelligence, vol. 5, no. 4, pp.
221–232, 2016.

[31] Y. Yang, K. Zha, Y. Chen, H. Wang, and D. Katabi, “Delving into
deep imbalanced regression,” in International Conference on Machine
Learning. PMLR, 2021, pp. 11 842–11 851.

[32] L. Torgo, P. Branco, R. P. Ribeiro, and B. Pfahringer, “Resampling
strategies for regression,” Expert Systems, vol. 32, no. 3, pp. 465–476,
2015.

[33] P. Branco, L. Torgo, and R. P. Ribeiro, “Smogn: a pre-processing
approach for imbalanced regression,” in First international workshop
on learning with imbalanced domains: Theory and applications.
PMLR, 2017, pp. 36–50.

https://agilityrobotics.com/robots
https://www.sciencedirect.com/science/article/pii/S1474667017629598
https://www.sciencedirect.com/science/article/pii/S1474667017629598
https://github.com/UMich-BipedLab/Digit_Fall_Prediction_Dataset
https://github.com/UMich-BipedLab/Digit_Fall_Prediction_Dataset

	Introduction
	Motivation
	Background
	Literature Review
	Objectives of the Paper
	Contributions

	Hardware Overview and Data Generation
	Hardware Overview
	Simulation Data Generation
	Hardware Data Generation
	Data Pre-processing

	Fall Prediction Method
	Critical Fault Classifier
	Training
	Results

	Lead Time Prediction
	Lead Time Classifier
	Lead Time Regressor

	Overall Fall Prediction Method Results
	Conclusion
	References

